Determining the Mueller Matrix of an Arbitrary Optical Array Element

Sophie Waldman1 and Tim Gay2

1 Department of Physics, Harvey Mudd College, Claremont, CA 91711
2 Jorgenson Laboratory of Physics, University of Nebraska-Lincoln, Lincoln, NE 68588

Introduction

A precise understanding of how optical elements affect the polarization of incident light is important when those elements are used to gather data as part of a more complex experiment \cite{1}. A mathematical tool for characterizing these elements is the Mueller matrix, which represents polarization-dependent effects through action on a Stokes vector describing the incoming light. In order to measure Mueller matrices, a Mueller matrix polarimeter, based on a design from \cite{2}, was built and is still undergoing development.

$$\hat{S} = \begin{pmatrix} I_0 & I_H - I_V \\ I_{45} - I_{-45} & I_R - I_L \end{pmatrix}$$

The Stokes vector is capable of representing polarized, partially polarized, or unpolarized light, and any polarization direction. The first parameter gives the total intensity of the light, while the other three give the intensity difference between two orthogonal polarizations. Terms are assumed to combine incoherently—that is, there is no constant phase difference between any two terms, or between any two Stokes vectors.

Polarimeter Layout

White light from the source with Stokes vector S passes through an initial polarizer P_1 and retarder C_1, the unknown element M, then a final retarder C_2 and polarizer P_2 before passing through an interference filter (not shown) and reaching the detector. The polarizers are fixed at 0° relative to the x-axis, while the retarders are independently rotated to 0°, 22.5°, 45°, and 67.5°. Detector response R for retarder angles θ_i and θ_j measures the first parameter of the final Stokes vector and is given by the Mueller matrix equation $R = P_2 \, C_2 \, M \, C_1 \, P_1 \, S$.

Mueller Matrices

<table>
<thead>
<tr>
<th>$p_1^2 + p_2^2$</th>
<th>$p_1^2 - p_2^2$</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_1^2 \cos \delta_c$</td>
<td>$p_1^2 \sin \delta_c$</td>
<td>p_1^2</td>
<td>p_2^2</td>
</tr>
</tbody>
</table>

Linear Polarizer

<table>
<thead>
<tr>
<th>1</th>
<th>$1 - P^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 - P^2$</td>
<td>$1 + P^2$</td>
</tr>
</tbody>
</table>

Retarder

The Mueller matrix polarimeter currently has both high systematic and random error. The negative entry in the $(4,4)$ component of the calculated Mueller matrix shows some sort of problem relating to circularly polarized light, while the high standard deviations show that the polarimeter is sensitive to small changes in measurements. Uncertainties on the order of 1% or smaller in measurements became uncertainties on the order of 10%-100% in the final Mueller matrix. Unfortunately, the light source intensity yielded slightly better results, which are reproduced below.

Results

The Mueller matrix polarimeter currently has both high systematic and random error. The negative entry in the $(4,4)$ component of the calculated Mueller matrix shows some sort of problem relating to circularly polarized light, while the high standard deviations show that the polarimeter is sensitive to small changes in measurements. Uncertainties on the order of 1% or smaller in measurements became uncertainties on the order of 10%-100% in the final Mueller matrix. Unfortunately, the light source intensity goes through long-term variations of about 0.6%, so future development should involve a switch to laser light and/or a modified experimental setup that can detect these fluctuations and take Mueller matrix data simultaneously.

Acknowledgments

The author would like to acknowledge helpful discussions and advice from Eric Litaker and Munir Pirbhai. This research was funded by NSF REU Grant 0905071.