Search for Asymmetric Interactions between Chiral Molecules and Spin-Polarized Electrons

J.M. Dreiling¹, E.T. Litaker¹, K.W. Trantham², and T.J. Gay¹

¹Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0111
²Department of Physics and Astronomy, University of Nebraska-Kearney, Kearney, NE 68849-4420

EXPERIMENT

In this experiment, spin-polarized electrons with alternating forward and backward longitudinal spins collide with a chirally-pure molecular vapor target. The experimental apparatus is shown in Fig. 1. The transmission current asymmetry is defined as

\[A = \left(\frac{I_+ - I_-}{I_+ + I_-} \right)_R \left(\frac{I_+ - I_-}{I_+ + I_-} \right)_L, \]

where \(I_+ \) (\(I_- \)) is the transmitted current measured for forward (backward) electron spins, and "L" ("R") correspond to the left- (right-) handed chirality of the target molecules.

RESULTS

At present, we have made measurements of \(A \) for the transmission of longitudinally spin-polarized electrons through a vapor of chirally-pure bromocamphor (C_{10}H_{15}BrO) at 1.5 eV and 3.5 eV electron scattering energy. The magnetically-collimated electron beam is attenuated by bromocamphor to 30% of its initial value for our measurements. Our preliminary results with Chauvenet’s criteria applied give \(A_{1.5 \text{ eV}} = 0.41(7) \times 10^{-4} \) and \(A_{3.5 \text{ eV}} = 0.58(7) \times 10^{-4} \) (see Fig. 3). This should be compared with the measurements of Mayer et al. [1], where they report asymmetries (by our definition and scaled for electron polarization and beam attenuation) of \(A_{1.5 \text{ eV}} = 1.2(2) \times 10^{-4} \) and \(A_{3.5 \text{ eV}} = 0.4(1) \times 10^{-4} \).

Fig. 1. Experimental apparatus: (1) laser beam for GaAs source; (2) electron beam; (3) guiding magnets; (4) GaAs photocathode; (5) cesiators; (6) gate valve; (7) chiral target cell; (8) optical polarimeter target cell; (9) lens; (10) to optical polarimeter.

Fig. 2. Example of data collected to measure the transmission asymmetry of spin-polarized electrons through the two different enantiomers of bromocamphor.

Fig. 3. Results for spin-polarized electron transmission asymmetry through bromocamphor at 1.5 eV (top) and 3.5 eV (bottom) incident electron energy.

We gratefully acknowledge valuable discussions with Profs. Paul Burrow and Herman Batelaan. This project is funded by NSF Grant PHY-1206067.